

Expectations of means and genetic variances in backcross populations*

T.S.Cox

Research Geneticist, USDA-ARS, Room 354, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA

Received September 12, 1983 Communicated by A. L. Kahler

Summary. The genetic variance among F₂-derived lines of backcrosses (BCgF2-derived lines) depends on the backcross generation (g), the number of F_1 plants crossed and selfed in generations 1 through g, and the number of BCgF₂-derived lines evaluated. Additive genetic variance decreases linearly with backcrossing when one BCF₁ plant per generation is crossed and selfed. The relationship is curvilinear if more than one BCF_1 plant is used; as the number of BCF_1 plants increases, additive genetic variance among BC₁F₂derived lines approaches that among BC₀F₂-derived lines. The effect of population size on genetic variance is due both to fixation of alleles in previous generations and to sampling of genotypes in the population being evaluated. Dominance and repulsion linkage can cause small increases in genetic variance from BC_0 to BC_1 .

Key words: Introgression – Population size – Sampling – Backcrossing – Linkage

Introduction

Utilization of exotic germplasm often involves backcrossing to an adapted parent before starting selection in order to restore agronomic suitability (MacKey 1963). Several recent theoretical (Bailey 1977; Baker 1976), computer-simulation (Dudley 1982; Reddy and Comstock 1976), and empirical (Lawrence and Frey 1975; Rodgers 1982) studies have investigated the distribution of progeny in populations derived from backcrosses and the implications for plant breeding for quantitative traits.

To improve a quantitative trait when one parent is inferior to the other, a plant breeder must make enough backcrosses to increase the mean sufficiently but not so many that genetic variance is reduced below the level required for successful selection. In this paper, the theoretical means and genetic variances of populations of random F_2 -derived lines from successive backcrosses are expressed in terms of the number of backcrosses, the number of F_1 plants crossed and selfed in each backcross generation, and the number of F_2 derived lines evaluated per F_1 family.

Population structure

The types of populations considered in this paper have been utilized experimentally by Lawrence and Frey (1975), Rodgers (1982), and Cox and Frey (198).

Populations are developed as follows. A cross is made between recurrent and donor homozygous parents, the F_1 is backcrossed to produce BC_1F_1 and also selfed to produce the F_2 (herein called BC_0F_2) generation (Fig. 1). Individual BC_0F_2 plants are selfpollinated to produce BC_0F_2 -derived lines. Pollen from a number (n₁) or BC_1F_1 plants is bulked and used to make the second backcross, producing the BC_2F_1 ; the same n₁ BC_1F_1 plants are selfed to produce the BC_1F_2 . BC_1F_2 seed is bulked and planted, and BC_1F_2 -derived lines produced as in the BC_0 . The process is repeated through any number of backcrosses (Fig. 1).

 BC_gF_2 -derived lines may be propagated by selfpollination through any number of generations with bulking of seed of selfed plants within lines. Thus, for example, we refer to BC_2F_2 -derived lines in the F_3 , BC_2F_2 -derived lines in the F_4 , etc.

^{*} Joint contribution of USDA-ARS and Journal Paper No. J-11095 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2471

Fig. 1. Development of backcross populations

Fig. 2. Relation between generation means and percentages of cultivated germplasm with and without dominance (for BC_gF_2 -derived lines in the F_3 from a wild × cultivated cross with backcrossing to the cultivated parent)

Means of backcross populations

The mean of the BC_gF_s generation in the absence of epistasis is

$$\mu_{g} = \{1 - (\frac{1}{2})^{g}\} \mathbf{R} + (\frac{1}{2})^{g} (\frac{1}{2})^{s-1} \mathbf{H}$$
(1)

where R is the mean of the recurrent parent and H the mean of the F_1 . Depending on which parent has the higher value, the progeny mean will increase or decrease linearly with the percentage of cultivated germ-plasm in the population (Fig. 2).

Genetic variances of backcross populations

The genetic variance among BC_gF_2 -derived lines was obtained for two cases: (1) an additive model with dominance and (2) a two-locus model with dominance, repulsion linkage, and no epistasis.

T.S. Cox: Means and genetic variances in backcross populations

Additive model with dominance

The genetic variance among BC_gF_2 -derived lines may be divided into two components: (1) variance among BC_gF_1 families and (2) mean variance among BC_gF_2 derived lines within BC_gF_1 families. Symbolically,

$$V_g = V_g(F_1) + \overline{V}_g(F_2/F_1).$$
 (2)

The genetic variance among F_1 families is zero (i.e., $V_0(F_1) = 0$). For g > 0, $V_g(F_1)$ depends on the number of F_1 plants selfed to produce generation g and on the number of F_1 plants backcrossed in generations 1 through (g - 1) but is independent of the number of BC_gF_2 -derived lines evaluated. $V_g(F_1)$ may be derived as follows.

Let n_g be the number of BC_gF_1 plants selfed to produce BC_gF_2 -derived lines, and let k be the number of loci segregating.

Consider locus i at which x_g out of $n_g BC_gF_1$ plants are heterozygous. Let families derived from BC_gF_1 plants of the following genotypes have the indicated means:

BC _g F ₁ genotype	Frequency	Family mean $(BC_gF_2-$ derived lines in F_s)
B _i B _i	$1 - \frac{x_g}{n_g}$	a _i
B _i b _i	$\frac{x_g}{n_g}$	$(\frac{1}{2})^{s-1} d_i$

The variance among families, in the case of no dominance $(d_i = 0)$, is

$$(V_g(F_1)_i | x_g) = \frac{x_g}{n_g} \left(1 - \frac{x_g}{n_g} \right) a_i^2.$$
 (3)

The probability that $x_g BC_gF_1$ plants are heterozygous at locus i is given by the binomial formula:

$$P(x_g) = \frac{n_g!}{x_g! (n_g - x_g)!} \left(\frac{x_{g-1}}{2n_{g-1}}\right)^{x_g} \left(1 - \frac{x_{g-1}}{2n_{g-1}}\right)^{n_g - x_g}$$

where x_{g-1} plants were heterozygous in the $BC_{g-1}F_1$. The variance due to locus i is

$$V_{g}(F_{1})_{i} = \sum_{x_{g}=1}^{n_{g}} (P(x_{g})) (V_{g}(F_{1})_{i} | x_{g})$$

$$= \sum_{x_{g}=1}^{n_{g}} \frac{n_{g}!}{x_{g}! (n_{g} - x_{g})!} \left(\frac{x_{g-1}}{2n_{g-1}}\right)^{x_{g}} \qquad (4)$$

$$\times \left(1 - \frac{x_{g-1}}{2n_{g-1}}\right)^{n_{g} - x_{g}} \left(\frac{x_{g}}{n_{g}} - \frac{x_{g}^{2}}{n_{g}^{2}}\right) a_{1}^{2}$$

T.S. Cox: Means and genetic variances in backcross populations

which can be reduced to

$$V_{g}(F_{1})_{i} = \left(1 - \frac{1}{n_{g}}\right) \left(\frac{x_{g-1}}{2n_{g-1}}\right) \left(1 - \frac{x_{g-1}}{2n_{g-1}}\right) a_{i}^{2}.$$
 (5)

For generation g + 1,

$$V_{g+1}(F_1)_i = \sum_{x_g=1}^{n_g} \frac{n_g!}{x_g! (n_g - x_g)!} \left(\frac{x_{g-1}}{2n_{g-1}}\right)^{x_g}$$
(6)

$$\times \left(1 - \frac{\mathbf{x}_{g-1}}{2 \mathbf{n}_{g-1}}\right)^{\mathbf{n}_g - \mathbf{x}_g} \left(1 - \frac{1}{\mathbf{n}_{g+1}}\right) \left(\frac{\mathbf{x}_g}{2 \mathbf{n}_g}\right) \left(1 - \frac{\mathbf{x}_g}{2 \mathbf{n}_g}\right) a_1^2$$

which can be reduced, in a similar way, to

$$V_{g+1}(F_1)_i = \left[\left(1 - \frac{1}{2n_g} \right) \left(1 - \frac{1}{n_{g+1}} \right) \left(\frac{x_{g-1}}{4n_{g-1}} \right) - \left(1 - \frac{1}{n_g} \right) \left(1 - \frac{1}{n_{g+1}} \right) \left(\frac{x_{g-1}}{4n_{g-1}} \right)^2 \right] a_i^2.$$
(7)

Repeating the process for generation g + 2, summing over loci (assuming absence of linkage and epistasis), and then letting g=1 (so that $\frac{x_{g-1}}{n_{g-1}} = \frac{x_0}{n_0} = 1$), we have

$$V_{1}(F_{1}) = \left[\left(1 - \frac{1}{n_{1}}\right) \left(\frac{1}{2}\right) - \left(1 - \frac{1}{n_{1}}\right) \left(\frac{1}{4}\right) \right] \sigma_{A}^{2},$$

$$V_{2}(F_{1}) = \left[\left(1 - \frac{1}{2n_{1}}\right) \left(1 - \frac{1}{n_{2}}\right) \left(\frac{1}{4}\right) - \left(1 - \frac{1}{n_{1}}\right) \left(1 - \frac{1}{n_{2}}\right) \left(\frac{1}{16}\right) \right] \sigma_{A}^{2},$$

$$V_{3}(F_{1}) = \left[\left(1 - \frac{1}{4n_{1}}\right) \left(1 - \frac{1}{2n_{2}}\right) \left(1 - \frac{1}{n_{3}}\right) \left(\frac{1}{8}\right) \quad (8) - \left(1 - \frac{1}{n_{1}}\right) \left(1 - \frac{1}{n_{2}}\right) \left(1 - \frac{1}{n_{3}}\right) \left(\frac{1}{64}\right) \right] \sigma_{A}^{2}, \quad \text{etc.}$$

where σ_A^2 is the variance among BC₀F_{∞}-derived lines (total potential additive variance).

In general, if $n_1 = n_2 = ... = n$,

$$V_{g}(F_{1}) = \left[\prod_{k=0}^{g-1} \left(1 - \frac{1}{2^{k} n}\right) - \left(1 - \frac{1}{n}\right)^{g} \left(\frac{1}{2}\right)^{g}\right] \left(\frac{1}{2}\right)^{g} \sigma_{A}^{2},$$

$$V_{0}(F_{1}) = 0.$$
(9)

In the case of $d_i \neq 0$, the coefficients of d_i^2 and $a_i d_i$ may be calculated in the same way, so that

$$V_{g}(F_{1}) = \left[\prod_{k=0}^{g-1} \left(1 - \frac{1}{2^{k} n}\right) - \left(1 - \frac{1}{n}\right)^{g}\right] \left[\left(\frac{1}{2}\right)^{g}\right] \\ \times \left[\sigma_{A}^{2} + \left(\frac{1}{2}\right)^{2(s-1)} \sigma_{D}^{2} - \left(\frac{1}{2}\right)^{s-2} \sigma_{AD}\right]. \quad (10)$$

where $\sigma_{D}^{2} = \sum_{i} d_{i}^{2}$ and $\sigma_{AD} = \sum_{i} a_{i} d_{i}.$

 $\overline{V}_g(F_2/F_1)$, i.e., the mean variance within families, is independent of the number of F_1 plants selfed in any backcross generation, but does depend on the total number of F_2 plants selfed in generation g. Consider the class of segregating F_1 families comprising a total of v F_2 plants having the following genotypic frequencies and means:

F ₂ plant genotype	Frequency	Genotypic mean of F_2 -derived line in F_s	
B _i B _i	w/v	a _i	
B _i b _i	y/v	$(\frac{1}{2})^{s-2} d_i$	
b _i b _i	z/v	$-a_i$	

Then, if $d_i = 0$, the genetic variance within segregating families is

$$\left(\frac{w}{v}\right)a_i^2 + \left(\frac{z}{v}\right)(-a_i)^2 - \left(\frac{w-z}{v}\right)^2 a_i^2$$
(11)

where w + y + z = v.

The variables w, y, and z follow the trinomial distribution:

$$\mathbf{P}(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\mathbf{v}!}{\mathbf{w}!\,\mathbf{y}!\,\mathbf{z}!} \left(\frac{1}{4}\right)^{\mathbf{w}} \left(\frac{1}{2}\right)^{\mathbf{y}} \left(\frac{1}{4}\right)^{\mathbf{z}},$$

and the expected variance within classes of F1 families is

$$\begin{split} \overline{V}_{g}(F_{2}/F_{1})_{i} &= P(BC_{g}F_{1} = Bb) \\ &\times \sum \left[P(w, y, z) \,|\, BC_{g}F_{1} = Bb \right] \left[\frac{w + z}{v} - \left(\frac{w - z}{v} \right)^{2} \right] a_{i}^{2} \\ &= \left(\frac{1}{2} \right)^{g} \sum_{w=1}^{v} \sum_{y=1}^{v-w} \frac{v!}{w! \, y! \, z!} \left(\frac{1}{4} \right)^{w} \left(\frac{1}{2} \right)^{y} \left(\frac{1}{4} \right)^{z} \\ &\times \left[\frac{w + z}{v} - \left(\frac{w - z}{v} \right)^{2} \right] a_{i}^{2} \end{split}$$
(12)
$$&= \left(1 - \frac{1}{v} \right) \left(\frac{1}{2} \right)^{g+1} a_{i}^{2}. \end{split}$$

If an average of m F_2 plants per F_1 family are selfed, then $v = (\frac{1}{2}) {}^g mn_g$ and

$$\overline{V}_{g}(F_{2}/F_{1})_{i} = \left[\left(\frac{1}{2}\right)^{g+1} - \frac{1}{2 m n_{g}}\right]a_{i}^{2}, m n_{g} > 2^{g}.$$
 (13)

The coefficient of d_i^2 may be calculated in an analogous fashion, so that

$$\overline{V}(F_2/F_1) = \left[\left(\frac{1}{2}\right)^{g+1} - \frac{1}{2 m n_g} \right] \left[\sigma_A^2 + \left(\frac{1}{2}\right)^{2s-3} \sigma_D^2 \right].$$
(14)

Since
$$V_{g} = V_{g}(F_{1}) + \bar{V}_{g}(F_{2}/F_{1}),$$

 $V_{1} = \left[\left(1 - \frac{1}{n_{1}} \right) \left(\frac{1}{4} \right) \right] \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-2} \sigma_{D}^{2} - \left(\frac{1}{2} \right)^{s-2} \sigma_{AD} \right]$
 $+ \left[\frac{1}{4} - \frac{1}{2m_{1}n_{1}} \right] \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-3} \sigma_{D}^{2} \right],$
 $V_{2} = \left[\left(1 - \frac{1}{2n_{1}} \right) \left(1 - \frac{1}{n_{2}} \right) \left(\frac{1}{4} \right) - \left(1 - \frac{1}{n_{1}} \right) \left(1 - \frac{1}{n_{2}} \right) \left(\frac{1}{16} \right)$
 $\times \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-2} \sigma_{D}^{2} - \left(\frac{1}{2} \right)^{s-2} \sigma_{AD} \right]$
 $+ \left[\frac{1}{8} - \frac{1}{2m_{2}n_{2}} \right] \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-3} \sigma_{D}^{2} \right],$
and
 $V_{3} = \left[\left(1 - \frac{1}{4n_{1}} \right) \left(1 - \frac{1}{2n_{2}} \right) \left(1 - \frac{1}{n_{3}} \right) \left(\frac{1}{8} \right)$
 $- \left(1 - \frac{1}{n_{1}} \right) \left(1 - \frac{1}{2n_{2}} \right) \left(1 - \frac{1}{n_{3}} \right) \left(\frac{1}{64} \right) \right]$
 $\times \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-2} \sigma_{D}^{2} - \left(\frac{1}{2} \right)^{s-2} \sigma_{AD} \right]$
 $+ \left[\frac{1}{16} - \frac{1}{2m_{3}n_{3}} \right] \left[\sigma_{A}^{2} + \left(\frac{1}{2} \right)^{2s-3} \sigma_{D}^{2} \right],$ (15)
 $m_{g} n_{g} > 2^{g}.$

All formulas apply to BC_gF_2 plants when s = 2.

In general, if n BCF₁ plants are crossed and selfed in each generation 1 to g and a total of mn BC_gF_2 plants per generation are selfed,

$$V_{g} = V_{g}(F_{1}) + \bar{V}_{g}(F_{2}/F_{1})$$

$$= \left[\prod_{k=0}^{g-1} \left(1 - \frac{1}{2^{k}n}\right) - \left(1 - \frac{1}{n}\right)^{g} \left(\frac{1}{2}\right)^{g}\right] \left[\left(\frac{1}{2}\right)^{g}\right]$$

$$\times \left[\sigma_{A}^{2} + \left(\frac{1}{2}\right)^{2s-2} \sigma_{D}^{2} - \left(\frac{1}{2}\right)^{s-2} \sigma_{AD}\right]$$

$$+ \left[\left(\frac{1}{2}\right)^{g+1} - \frac{1}{2mn}\right] \left[\sigma_{A}^{2} + \left(\frac{1}{2}\right)^{2s-3} \sigma_{D}^{2}\right], \quad (16)$$

$$mn > 2^{g}$$

and

$$\lim_{\substack{n \to \infty \\ m \to \infty}} V_{g} = \left[\frac{3}{2} - \left(\frac{1}{2}\right)^{g}\right] \left(\frac{1}{2}\right)^{g} \sigma_{A}^{2} + \left[2 - \left(\frac{1}{2}\right)^{g}\right]$$
(17)

$$\times \left(\frac{1}{2}\right)^{g+2s-2} \sigma_{\rm D}^2 - \left[1 - \left(\frac{1}{2}\right)^g\right] \left(\frac{1}{2}\right)^{g+s-2} \sigma_{\rm AD} \,.$$

T.S. Cox: Means and genetic variances in backcross populations

 V_g closely approaches this limit for mn $\ge n \ge 12$.

The sign of σ_{AD} depends on whether the products $a_i d_i$ for the separate loci are predominantly positive or negative. The sign of $a_i d_i$ will be according to the following chart:

Effect of allele from cultivated parent	Dominance of cultivated allele			
	Dominant	No dominance	Recessive	
Positive Negative	+ 	0 0	 +	

Thus, for example, if most alleles from the recurrent parent are positive and dominant, σ_{AD} is positive and V_g is reduced. To the extent that alleles behave additively or that dominant and positive alleles are dispersed between the parents, the term involving σ_{AD} is reduced.

For BC_gF₂-derived lines in the F₄ or later generation, σ_D^2 and σ_{AD} are relatively small, so that if mn is large,

$$V_{g} \simeq \left[\prod_{k=0}^{g-1} \left(1 - \frac{1}{2^{k} n}\right) - \left(1 - \frac{1}{n}\right)^{g} \left(\frac{1}{2}\right)^{g} + \frac{1}{2}\right] \left[\left(\frac{1}{2}\right)^{g}\right] \sigma_{A}^{2}$$
(18)

and

$$\lim_{\substack{n\to\infty\\m\to\infty}} V_{g} \cong \left[\frac{3}{2} - \left(\frac{1}{2}\right)^{g}\right] \left(\frac{1}{2}\right)^{g} \sigma_{A}^{2}.$$

The relationship between V_g and g for different combinations of n and m is shown in Fig. 3.

Fig. 3. Change in genetic variance with backcrossing (in absence of dominance) for four combinations of number of F_1 families (*n*) and number of lines per family (*m*). The total number of lines is constant (mn = 64)

T.S. Cox: Means and genetic variances in backcross populations

Repulsion linkage

The breakage of possible repulsion linkages lessens the rate of decrease in additive variance, compared with the example of independent assortment. Consider two loci linked in repulsion with recombination frequency r. Given that a large number of BC₁F₁ and BC₂F₁ plants are crossed and selfed $(n \rightarrow \infty)$ and that large populations of BC_gF₂-derived lines are evaluated $(m \rightarrow \infty)$, the 16 possible genotypes of BC_gF₂-derived lines will occur in the frequencies given in Table 1. Genetic variances computed from Table 1 are:

 $\frac{\text{Generation} \quad V_g}{\text{BC}_0} \qquad r \, a^2 + \left(\frac{1}{4}\right)^{s-2} \left(r^2 - r + \frac{1}{2}\right) d^2$ $\frac{\text{BC}_1}{\text{BC}_1} \qquad \left(-\frac{1}{2} r^2 + \frac{5}{4} r\right) a^2 + \left(\frac{1}{4}\right)^{s-2} \left(-\frac{1}{2} r^3 + r^2 - \frac{3}{4} r + \frac{3}{8}\right) d^2$ $\frac{\text{BC}_2}{\text{BC}_2} \qquad \left(\frac{1}{4} r^3 - \frac{7}{8} r^2 + r\right) a^2 + \left(\frac{1}{4}\right)^{s-2} \left(\frac{1}{4} r^4 - \frac{3}{4} r^3 + \frac{7}{8} r^2 - \frac{1}{2} r + \frac{7}{32}\right) d^2$

For $r = \frac{1}{2}$, these expressions give the same results as formula 17, because σ_{AD} is 0.

The relationship of V_g to r for d = 0 is depicted in Fig. 4. $V_1 > V_0 > V_2$ for any value of r except $\frac{1}{2}$ and 0.

Fig. 4. Relationship between genetic variance and recombination frequency for two loci linked in repulsion

Genetic variance is increased with backcrossing because of the additional opportunity for recombination at meiosis in the BC₁F₁ plants. However, for this recombination to cause a large relative increase in variance from the BC₀F₂ to the BC₁F₂, r must be very small, causing drastic reductions in the absolute variance (Fig. 4). The dominance component of variance would be reduced by recombination, causing a decrease in genetic variance from BC₀F₂ to BC₁F₂ for d > 0.

Discussion

Wright (1931), by considering the binomial sampling of 2N gametes, showed that a fraction, 1/2N, of all segregating loci will become fixed with every generation of random mating (with no selection, mutation, or migration) within a population of N individuals. With no dominance, the average allelic frequencies, and thus the expected genotypic mean, will not change, but the variance of the allelic frequency will. Accordingly, the genetic variance after t generations will be

$$V_{t} = \left(1 - \frac{1}{2N}\right)^{t} V_{0} \tag{19}$$

where V_0 is the initial genetic variance (Bulmer 1980).

When backcrossing is studied, binomial and trinomial sampling of genotypes, and not gametes, is more appropriately used because mating is not random and mean allelic frequencies change from generation to generation. Thus, the present study utilized sampling of F_1 or F_2 plants. The asymmetric nature of the backcross populations considered herein resulted in formulas for genetic variance that are more complicated than formula 19. The formulas may be compared by rearranging, as an example, formula 15 for the BC₃:

$$\begin{split} \mathbf{V}_{3} &= \left(1 - \frac{1}{n_{3}}\right) \left[\left(1 - \frac{1}{4 n_{1}}\right) \left(1 - \frac{1}{2 n_{2}}\right) \left(\frac{1}{2}\right)^{3} \\ &- \left(1 - \frac{1}{n_{1}}\right) \left(1 - \frac{1}{n_{2}}\right) \left(\frac{1}{2}\right)^{6} \right] \sigma_{A}^{2} \\ &+ \left(1 - \frac{1}{\left(\frac{1}{2}\right)^{3} m_{3} n_{3}}\right) \left(\frac{1}{2}\right)^{4} \sigma_{A}^{2}. \end{split}$$

Terms involving n_1 and n_2 signify reduction in variance due to fixation of alleles in previous generations. They are analogous to the term (1 - 1/2N) in formula 19, except that the effect of F_1 plant number in earlier generations (grandparental, great-grandparental,

F ₂ plant genotype	F ₂ -derived line value	Genotypic frequency		
		BC ₀	BC ₁	BC ₂
AABB	a	$\frac{1}{4}$ r ²	$-\frac{1}{8}r^3 + \frac{1}{8}r^2 + \frac{1}{8}r$	$\frac{1}{16}r^4 - \frac{1}{8}r^3 + \frac{1}{8}r$
AABb	$\frac{1}{2}a + \left(\frac{1}{2}\right)^{s-1}d$	$-\frac{1}{2}r^2+\frac{1}{2}r$	$\frac{1}{4}$ r ³ - $\frac{1}{2}$ r ² + $\frac{1}{2}$ r	$-\frac{1}{8}r^4 + \frac{3}{8}r^3 - \frac{3}{8}r^2 + \frac{3}{8}r$
AAbb ^a	0	$\frac{1}{4}r^2 - \frac{1}{2}r + \frac{1}{4}$	$-\frac{1}{8}r^3 + \frac{3}{8}r^2 - \frac{5}{8}r + \frac{5}{8}$	$\frac{1}{16} r^4 - \frac{1}{4} r^3 + \frac{1}{8} r^2 + \frac{3}{4} r + \frac{7}{16}$
AaBB	$\frac{1}{2}a + \left(\frac{1}{2}\right)^{s-1}d$	$-\frac{1}{2}r^2+\frac{1}{2}r$	$\frac{1}{4}$ r ³ - $\frac{1}{2}$ r ² + $\frac{1}{4}$ r	$-\frac{1}{8}r^4 - \frac{3}{8}r^3 - \frac{3}{8}r^2 + \frac{1}{8}r$
AaBb	$\left(\frac{1}{2}\right)^{s-2} d$	$r^2 - r + \frac{1}{2}$	$-\frac{1}{2}r^3 + r^2 - \frac{3}{4}r + \frac{1}{4}$	$\frac{1}{4}r^4 - \frac{3}{4}r^3 + \frac{7}{8}r^2 - \frac{1}{2}r + \frac{1}{8}$
Aabb	$-\frac{1}{2}a + \left(\frac{1}{2}\right)^{s-1}d$	$-\frac{1}{2}r^2+\frac{1}{2}r$	$\frac{1}{4}$ r ³ - $\frac{1}{2}$ r ² + $\frac{1}{2}$ r	$-\frac{1}{8}r^4 + \frac{3}{8}r^3 - \frac{3}{8}r^2 + \frac{3}{8}r$
aaBBª	0	$\frac{1}{4}r^2 - \frac{1}{2}r + \frac{1}{4}$	$-\frac{1}{8}r^3 + \frac{3}{4}r^2 - \frac{1}{4}r + \frac{1}{8}$	$\frac{1}{16}r^4 - \frac{1}{4}r^3 + \frac{3}{8}r^2 - \frac{1}{4}r + \frac{1}{16}$
aaBb	$-\frac{1}{2}a + \left(\frac{1}{2}\right)^{s-1}d$	$-\frac{1}{2}r^{2}+\frac{1}{2}r$	$\frac{1}{4}$ r ³ - $\frac{1}{2}$ r ² + $\frac{1}{4}$ r	$-\frac{1}{8}r^4 + \frac{3}{8}r^3 - \frac{3}{8}r^2 + \frac{1}{8}r$
aabb	— a	$\frac{1}{4}$ r ²	$-\frac{1}{8}r^3 + \frac{1}{8}r^2 + \frac{1}{8}r$	$\frac{1}{16} r^4 - \frac{1}{8} r^3 + \frac{1}{8} r$

Table 1. F_2 plant genotype, value of the line in F_s derived from that genotype, and genotypic frequencies in the BC_Q, BC₁, and BC₂ in the case of repulsion linkage between loci A and B with recombination frequency r

^a Parental genotype

etc.) is succesively reduced, since each BCF₁ generation contributes only $\frac{1}{2}$ of the genes of the following generation. The term $(1 - 1/n_3)$ signifies reduction of variance due to a finite number of BCF₁ plants in the present generation. It has nothing to do with fixation of alleles but is due to random deviations from the expected ratio of heterozygous to homozygous F₁ plants. The term involving m₃ n₃ likewise is due to deviations from a 1AA:2Aa:1aa ratio among F₂ plants from heterozygous F₁s.

Taking into account sampling of genotypes in generation t would change formula 19 to

$$\mathbf{V}_{t} = \left(1 - \frac{1}{2N}\right)^{t} \left(1 - \frac{1}{N}\right) \mathbf{V}_{0}.$$

In evolutionary situations which involve many generations the effect of population size in generation t on V_t is small, compared with the cumulative effect of small population size in generations 1 through t - 1. Also, the effect on V_t of the number of progeny evaluated in generation t is small in most quantitative genetic studies, since a large population generally is evaluated (though it may be descended from a small number of individuals). With backcrosses, however, a small number of BC_gF₁ plants may be selfed to produce the BC_gF₂, with a considerable reduction in variance. Variances among BC₀F₂- and BC₁F₂-derived lines are equal for infinite n. Figure 3 indicates that this upper limit of V_g is closely approached when n = 32 and m = 2. Indeed, increasing n beyond 12 produces little change in V_g. For any value of mn, the maximum V_g is obtained when m = 1.

Hill (1966) gave the expected additive variance among BC₁F₁ families as $\frac{1}{4}$ D (equal to $\frac{1}{4}\sigma_A^2$ in the present terminology) and that among F₂ plants within BC₁F₁'s as $\frac{1}{4}$ D. This gives a total variance of the BC₁F₂ of $\frac{1}{2}$ D ($\frac{1}{2}\sigma_A^2$), equal to V₁ in formula 15 as m₁ and n₁ become very large.

Acknowledgement. Dr. Dan M. Rodgers, in discussions with the author, first suggested considering the effect of BCF_1 plant numbers on genetic variance. The author wishes to thank the World Food Institute at Iowa State University for the support it provided through a graduate assistantship.

T.S. Cox: Means and genetic variances in backcross populations

References

- Bailey TB (1977) Selection limits in self-fertilizing populations following the cross of homozygous lines. In: Pollack E, Kempthorne O, Bailey TB (eds) Proc Int Conf Quant Genet. The Iowa State University Press, Ames, Iowa, pp 399-412
- Baker RJ (1976) Some thoughts about backcrossing and quantitative traits. Wheat Newslett 22:43-44
- Bulmer MG (1980) The mathematical theory of quantitative genetics. Clarendon Press, Oxford
- Cox TS, Frey KJ (1984) Genetic variation for grain yield and related traits in sorghum introgression populations. Theor Appl Genet 68:145-153
- Dudley JW (1982) Theory for transfer of alleles. Crop Sci 22:631-637
- Hill J (1966) Recurrent backcrossing in the study of quantitative inheritance. Heredity 21:85-120

- Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (*Avena satival* L. × A. sterilis L.). Euphytica 24:77-85
- MacKey J (1963) Autogamous plant breeding based on already high-bred material. In: Akerberg E, Hagberg A (eds) Recent plant breeding research, Svalof 1946-1961. John Wiley, New York, pp 73-88
- Reddy BVS, Comstock RE (1976) Simulation of the backcross breeding method. 1. The effect of heritability and gene number on fixation of desired alleles. Crop Sci 16:825-830
- Rodgers DM (1982) Improvement of cultivated barley (Hordeum vulgare) with germplasm introgressed from H. spontaneum. PhD dissertation. Iowa State University, Ames, Iowa. University Microfilm No. 82-21223
- Wright S (1931) Evolution in Mendelian populations. Genetics 16:97-159